Trash Classification using Convolutional Neural Networks

CS5242 Neural Networks & Deep Learning Group 03 - Akankshita, Spatika, Trinh, Ganeshkumar

Outline

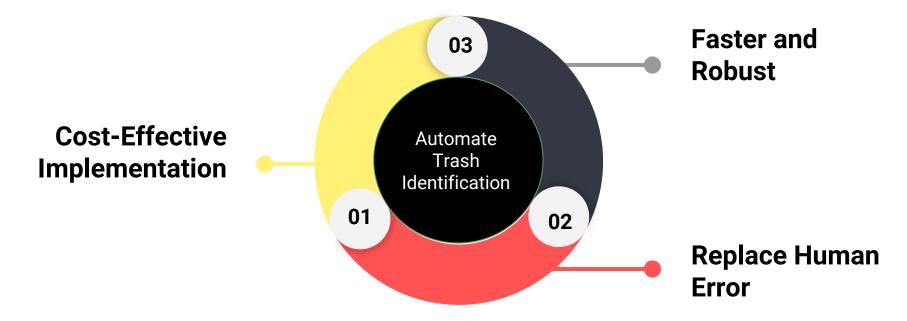
- 1. Problem Overview
- 2. Challenge and Novelty
- 3. Dataset
- 4. Model Building
- 5. Results and Analysis
- 6. Conclusion

1. Problem Overview

Target Use Cases

Separating recyclable materials from Trash is done manually

Problem Statement



Key Goals: Trash Identification by AI



2. Challenge and Novelty

Challenges

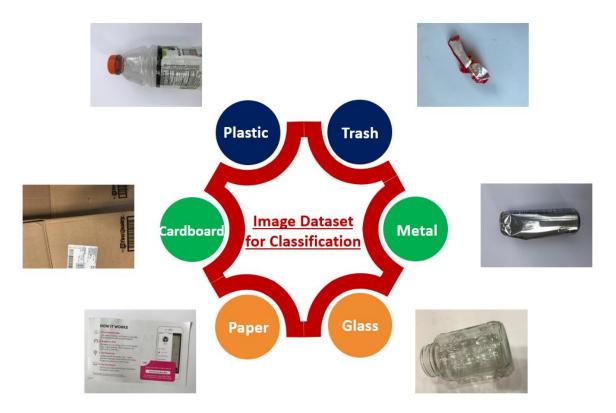
- Needs to work for trash identification in real-life scenarios
 - Can be almost anything: squished/stained/damaged, obscured by other trash/spills
- Dealing with highly imbalanced dataset
 - 137 trash images vs. 400-500 for the 5 recyclable categories
- Designing CNN architecture for base models
 - Several different combinations of layers to try
- Extensive hyperparameter tuning needed for base models
 - Kernel size, padding, stride, pooling-layer parameters

Novelty

- Adding to the original TrashNet [1] dataset
 - Tedious work. Described in Section 3.
- Not a common image classification problem due to the unlimited possibilities/challenging nature of collecting images of trash
- Few papers for reference material
- Assist in automated waste management
- SmartNation

3. Dataset

Image Dataset for Classification



Additional Images

- Adapt 'Trashnet' to Singapore/Asian context
- Combat class-imbalance problem
- Added 30 images of trash, like these:

Data Augmentation

Training Data:

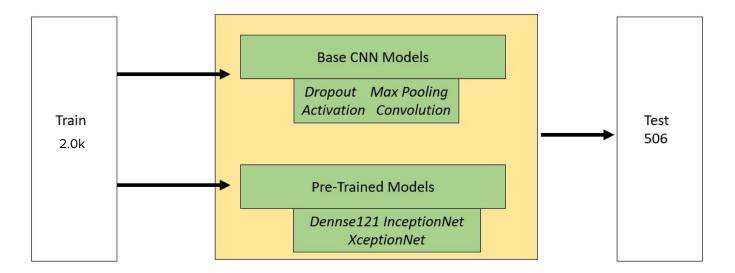
- Flipping images vertically and/or horizontally
- Cropping
- Shear
- Zoom

Test Data:

• Resizing only

4. Model Building

Modelling Process



Basic CNN Model

01	Convolution	 4 Conv2D Layers Input layers of 32 and 64 Same Padding
02	Activation	 Non Linear Activation 'RELU' used at every Convolution block Softmax function used for multi class classification in final layer
03	Dropout	 Helps to avoid Overfitting of model Added at each convolution block Values of 0.25, 0.5 used
04	Max Pooling	 Used to provide the max value in the feature map Pool_size (2,2) is used

Architecture

def getModel(num_classes):

```
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
```

```
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
return model
```

Input					
3X3 conv, 32					
3X3 conv, 32					
Pool					
3X3 conv, 64					
3X3 conv, 64					
Pool					
Dropout 0.5					
FC 512					
Dropout 0.5					
FC 6					
Softmax					

Tools/Technology

- Python3
- Keras (TensorFlow), Numpy, Pandas
- PyTorch (FastAl)
- ImageNet
- Google Colab + GPU (Tesla K80)

Fine-Tuned Pre-trained (ImageNet) Models

• Keras

- 1. InceptionResNetV2
- 2. Densenet121
- 3. Xception

Optimizers: Adam, Adadelta, RMSProp

• FastAl

- 1. Resnet34
- 2. Resnet50

Optimizers: AdamW

Tuning the Model Hyperparameters

• Grid Search

• Cyclical Learning Rates (FastAl)

• Bayesian Optimization (Keras)

5. Results and Analysis

Original Results

- Thung's original SVM model achieved 63% accuracy.
- Their neural network model achieved 27% accuracy.

Our models performed significantly better.

vs Our Model Results

Architecture	Batch	Optimizer	Epochs	Data Augmentation, Tuning	Accuracy
AkankshitaNet	32	Adadelta	10	Tuning: Bayesian Opt.	23.9%
SpatikaNet	32	Adam	5	Yes - shear, zoom, horizontal flip (updated dataset)	50.97%
TrinhNet	32	Adam	10	Shear, Zoom, Horizontal,Vertical flip (original dataset)	25.30%
GaneshNet	32	Adam	4	Rescale, Shear, Zoom, Horizontal flip (original)	23.33%
InceptionNetV2	20	Adadelta	100	None	89.13%
DenseNet121	20	Adam	40	None (original dataset)	86.3%
XceptionNet	32	Adam	10	Shear, Zoom, Horizontal,Vertical flip (original dataset)	91.9%
Resnet50 (FastAI)	20	AdamW	30	Learning Rate tuned using Cyclical Learning Rate	93.38%

Analysis of Results

- Basic CNN without augmentation does not give optimal results on original dataset, but improves on updated dataset.
- All pre-trained models have quite good results (> 80% accuracy) compared to basic models. Thus, learning of waste sorting is feasible with modern deep learning based approaches.
- FastAl Model gives best results since it utilizes cyclical learning rates technique, which finds the optimal learning rate.
- Training with **cyclical learning rates** also achieves improved classification accuracy without a need to tune and often in fewer iterations.

6. Conclusion

Takeaways

- Data augmentation only slightly improves the result in some models (for our case)
- Pre-trained models work better than our own basic models.
- Building CNN Model from scratch needs extensive research in terms of layers architecture or hyperparameter tuning of parameters
- Diversity helps: different representation of images always helps in model training
- Data science is all about applying different ideas; there's always room for improvement
- Larger training dataset (balanced) can increase the prediction accuracy

Future Extension

- To expand to more classification labels
- To increase the training image set
- To identify more than one object in the same frame
- Identifying particular scope of trash, example: food wastage, agro-products wastage, good yield vs. bad yield
- Stratified K-fold CV instead of just train-test split to reduce bias

Thank You!

7. Appendix

References

- 1. G. Thung. Trashnet. GitHub Repository, 2016.
- Leslie N Smith. Cyclical learning rates for training neural networks. In *Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on*, pp. 464–472. IEEE, 2017.

Workload Split

Akankshita:

- 1. Base code (image loading, resizing, basic model)
- 2. Models: Base CNN 1 with Bayesian Opt, InceptionNetV2, FastAI
- 3. Presentation content

Spatika:

- 1. Collection of new trash images, basic data augmentation code
- 2. Models Base CNN 2 with updated dataset, DenseNet121
- 3. Presentation content

Trinh:

- 1. Models Base CNN 3 on original dataset, XceptionNet, data augmentation
- 2. Pretrained model code
- 3. Presentation content

Ganeshkumar:

- 1. Skeleton presentation
- 2. Models Base CNN 4 on original dataset, DenseNet201, data augmentation
- 3. Presentation content